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12.1 PROBABILITES
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= Fonction caractéristique
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Variables aléatoires

La notion d’aléatoire apparait naturellement dans les systéemes de mesure
m parce que ce que I'on cherche a mesurer est susceptible de prendre plusieurs valeurs
issues d’un processus (possiblement déterministe) inconnu de I'observateur
= parce que les systémes physiques sont toujours affectés d’'un bruit

La description mathématique repose sur les concepts de variable aléatoire, vecteur
aléatoire, et signal aléatoire. Spécifiquement, on utilise les symboles X, X, X (-) et
X|[-] (majuscules) pour désigner les contre-parties aléatoires des quantités détermin-
istesz € R, z = (z1,...,2x5) € RY, 2(-) : R — Retz[] : Z — R (minuscules); ces
derniéres servent alors a décrire des réalisations du processus aléatoire.

Une variable aléatoire réelle X (scalaire) est caractérisée par sa densite de probabilité
px : R — R™. Celle-ci permet de calculer la probabilité de tout evénement £ C R.

Prob{X € E} = P(X € E} = / px (z)da

Prob(X € E) = / px (z)dz
JE

1 E 2
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Espérance mathématique et produit scalaire

Soit f : R — R une transformation (non-linéaire) de la variable aléatoire réelle X. Alors,
la valeur moyenne (ou espérance) de f(X) est donnée par

Ex{f(X)} = B{£(X)} 2 [ f@hpx(o)de,
ou l'intégrale peut aussi étre interprétée comme un produit scalaire
E{f(X)} = <pX,f>~
m Relation avec les descripteurs statistiques fondamentaux

Fonction de répartition: la probabilité que X soit plus petit que g € R
zo
zo— P{X <o} :/ px (v)dx

= (px *u)(z0) = (px,u(zo — ) = E{u(zo — X)}
Densité de probabilité

z— px(z) = (px,0(- —2)) = Ex{6(- —2)}
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Densité de probabilité et moments
= Une densité de probabilité est positive et d’intégrale 1
px(@) 20, [ px(e)de = Ex{1} =1 = pxo
R
= Valeur centrale ou moyenne px(2) = Lo~

px =E{X} = / rpx(r)de = px )
R

= Moment statistique d’'ordre n € N /

pxn=E{X"}= / x"px (z)dx
R

7
= Variance , , s Ecart type (ou dispersion)
Var(X) = E{(X — ux)’} = ox ox = VE{(X — px)?}
- / (v — px)*px (2)dz = px o — iy
R
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Exemples de densités de probabilité

m Densités de variables aléatoires de type “continues”

= loi uniforme sur [a,b] :  puni(z;a,b) = ﬁrect(i:g _ %)

(z—p)*
T VAN X ~N(u,0)

1
oV 2m

= loi Gaussienne univariée: px(z) =

= loi exponentielle:  pexp (73 A) = A - e u(x)

m Variables aléatoires discretes

Pour une variable aléatoire X qui ne prend que des valeurs discretes (:cn)N ona

n=1»

px(@) =) P{X =an} d(z —an) px ()
n=1 Pn

| t

NN
= loi binomiale:  puinom () = 2~ N E ( ) o(x —xp)
n
n=0
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Extension: vecteurs aléatoires

X = (Xy,...,XnN)o0Uu Xq,..., Xy sont des variables aléatoires scalaires

m Densité de probabilité px : RY — R px (z1,2)

= Probabilité d’un événement: E est un sous-ensemble de R

P(E) = Prob(X € E) = / P (x)da
E i

0.00%,

= Opérateur d’espérance (f est une fonction mesurable RY — RM)

B(A(X)} = [ F@px(@)de

Vecteur moyenne: px =E{X} RV
Matrice de covariance: Cx = E{(X — ux)(X —pux)'} € RNV

m Loi Gaussienne (ou normale) multivariée

L T (e
X ~N(uC) < px(w):me—z( ) C™ (x—p)
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Probabilités conditionnelles — indépendance

Soit px (x, y) la densité de probabilité du vecteur aléatoire X = (X,Y). Alors X et Y sont
de lois indépendantes ssi px (x, y) peut se mettre sous la forme px (x)py (y); c-a-d ssi

82 (long (.17, y))
0xdy

=0.
Ainsi, si X etY sontindépendants, alors E{f(X)-g(Y)}=E{f(X)} -E{g(Y)}

m Probabilités conditionnelles

On note px |y (z|y) la densité de probabilité de X connaissant Y = y.
Les régles de Bayes donnent les formules suivantes avec X = (X,Y)

px(z,y) = px(z) - py|x (ylz) = px v (z|y) - py (y)

T) = z,y)d
ou px (@) prX’Y( y)dy sont les lois réduites de X et Y.

py(y) = prX,Y(fL‘,y)dx
Bien sdr, si X et Y sont indépendants, alors py|x (y|z) = py (v) et px v (z]y) = px(z).
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Propriétés de I'opérateur d’espérance
m Opérateur d’expérance: f : R — R

E{f(X)} = / f(@)px (2)dz = (f, px)

= Expérance conjointe: f : RV — R

]E{f(X1,---,XN)}: f(:L‘l,...,l‘N)pxl .... XN(:L'l,...,l‘N)dl'l---dl‘N
RN

» Linéarité

E{aX} =aE{X}, VaeC

E{X1 + X2} = E{X1} + E{X2} (les variables aléatoires X; et X5 pouvant étre dépendantes)
s Séparabilité:

E{X} =E{(X1,...,Xn)} = (B{X31},...,E{XN})

m Exemples d’utilisation
E{(aX —Y)?} = a? E{X?} + E{Y?} — 2¢ E{XY}

Cov(X,Y) = E{(X ~E{X})(Y —E{Y})} =E{XY} - E{X}E{Y}
Var(aX + bY) = a*Var(X) + b*Var(Y) + 2ab Cov(X,Y)
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Fonction caracteéristique

Il est particulierement utile de travailler avec la fonction caractéristique de la variable
aléatoire. Il s’agit tout simplement de la transformée de Fourier de la densité de probabilité

Px(@) =2 {7} = [ px(a)ede = F(px) @

Théoréeme
Soient X, X, ..., X des variables aléatoires indépendantes de lois p; (), p2(z), . .., pn ()
etsoitY = Xy + Xo +--- + Xy. Alors la densité de probabilité de Y est

py(y) = (p1*p2* - xpn)(y)

Preuve: Py (w) = E{e—ij} =F {e—jw(X1+X2+...+XN)} —F {e‘ijl} ‘K {e—ijg} . {e‘jWXN}

=P (w) P(w)- - Pn(w)

J/

-~

f{Pl*pz*H-*pN}(w)

On peut également calculer tous les moments de X en dérivant cette fonction caractéristique

A" Px (w
R W
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Exemple d’application

Soit un signal numérique f[n| composé de zéros avec une probabilité p, et de 1 avec
une probabilité (1 — py), transmis a travers un systeme qui ajoute au signal un bruit b[n]
de loi N/(0, 02). On décide de la valeur recue par seuillage

il — {1, si fn] +b[n] > 8

0, sinon

fn] —‘—m— g[n]
bn]

La probabilité d’erreur est alors donnée par

Pere = P{gln] = 1|f[n] = 0} - P{f[n] = 0} + P{g[n] = 0| f[n] = 1} - P{f[n] = 1}

L +foo _ﬁéﬁd Po L s _@;U;d 1—po
e 20 €T e 20 x
V2T B ov2r J—oo .
1” plus probable
_ 1_1 B _ 1_1 1-8
_p0<2 2erf( \/5)> +(1 Po)(g gerf(o 2)) 0.35
T
‘ 2 . 03
ouerf()—ﬁ/e dt £
0 AL 0.25
0.2 scénario equipropable
0.15]

0 0.2 04 0.6 0.8 1
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Détecteur optimal

Soit une variable aléatoire X (éventuellement vectorielle) prenant N valeurs distinctes
x, avec la probabilité pr, = P{X = x}. Elle est perturbée par un bruit B de densité
de probabilité ¢(b) = pp(b) et le récepteur fournit une réalisation y = = + b.

Probleme: Quelle est la méthode qui permet d’associer le signal regu y a l'une des
valeurs x;, avec une probabilité d’erreur minimale?

Solution: Le détecteur optimal est la fonction 7" : y — >, z1, - 1, (y) ol 1, (y) est
la fonction indicatrice de 'ensemble Ej, qui est défini par les inégalités

yeE,opr-qy—xr) —p-qly—x1) >0, VIi#k
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Structure du détecteur optimal

T=x, & yeE & pr-qy—x)>p-qly—xz), VIiFEk

I
I

... BRI

. . —Zk Dk non

données du probléme
T z+b .

-~ ——

a retrouver, reed l s

probabilité connue N r=TN
Plo=a}=pe |
—~ —rN PN

inconnu,
probabilité connue
q(b)db
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Détecteur optimal: version “Neural network”

yc B, << logpy+logq(y —xp) >logp +logqly —x1), VI#k

Z1 ~

—T—> log q(-) - P,

T log py

Z9 S P2

—T—> log q(-) —T—'

—XT2 log po
Softmax

—T—v log q(-) —T—.

~Tk log pi

ZN ~

_T_’ 1qu(') — Py

exp(zk) —TN log pn
N
> k1 xP(2k)

= transforme les mesures de vraisemblance en probabilités

Softmax: P, =
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Détecteur optimal: preuve

Le détecteur attribue la valeur x; chaque fois que y € Ej. Alors, les ensembles Ej, sont disjoints
et sont tels que | J,, E, = Eiot OU Eiot est 'espace de toutes les valeurs possibles de y.

La probabilité d’erreur s’exprime sous la forme
Py = Zp{y ¢ Ek\x = xk} -P{x = xk} =1- ZP{y € Fretr= xk}
k k

:I—P{yeEleta?:a:l}—ZP{yGEkeMﬁ:xk}
k#l

—1—p1—z<P{y€Eketx—xk}—’P{yeEketw—xl}>
[y

Ef (pk~q(y—rk)—m~q(y—wz))dy
en choisissant [ arbitrairement dans [1... N]. :

Les ensembles disjoints Ej, qui minimisent P, vérifient nécessairement
Pe-q(y— k) —pi-qly —x) >0  pourtouty € B etl #k

sinon il suffirait de transférer de E;, a E; tous ses éléments y tels que py - q(y — k) —pi-q(y —x;) < 0.
Comme I'argument vaut pour tout /, les ensembles optimaux sous-jacents sont caractérisés par

YEEL S pe-qly—xp) —p-qly—1) >0, Vi£k
et ils forment une partition de Eit.
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m Exemple: le cas Gaussien

Si I'on suppose que le bruit suit une loi Gaussienne ¢(b) =

alors le domaine de décision £ est donné par

| —womp? (y—=p)?
P 0 2D

oV 2m

cad: (y—mr)? < (y—m)? — 202288 VI £k

2 X 2
max <‘“T+g“ + == log ﬂ) <y < min (””“’9” -
21 <Tg kTl Pk 22Tk L1k

17k 17k

Le détecteur optimal est donc un simple seuil.

Remarque: si les symboles sont équiprobables (pr = p;) JPROR Tk —2
le détecteur optimal correspond au choix naturel du maximum de vraisemblance.
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12.2 INFORMATION

= Notion d'information

Entropie d'une source

Répartitions a entropie maximale

= |nformation commune
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Notion d'information

Dans les systémes de communication, il est essentiel de quantifier I'information. Intuitive-
ment, ce qui est quantifiable dans l'information est relié a la probabilité d’occurrence:

= un message dont la probabilité est grande (demain, il fera jour) véhicule peu d’information
= un message dont la probabilité est faible (la Suisse sera championne du monde de foot)
en veéhicule beaucoup plus

Donc l'information I(p) = fonction décroissante de p.

D’autre part, I'information véhiculée par un message constitué de deux messages
indépendants (de probabilité p et ¢) est bien sir la somme des deux informations d’ou

I(p-q)=1(p) +1(q)

On peut montrer que la seule fonction continue vérifiant cette propriété est nécessairement

proportionnelle a log(p) d’ou, sia > 1,

I(p) = —log,(p).

Unser/ Sig & Sys Il 12-19

m Point de vue de l'ingénieur

L'information d’'un message numérique (¢ N) est le nombre minimal b de bits néces-
saires pour le stocker. Par exemple, pour transmettre d’'un message qui peut prendre n
valeurs équiprobables avec 27! < n < 2%;ilfaut b = [logn] bits. Comme la probabil-

ité d’un tel message est 1/n, on a
b= [—log,p| ~ —logy p

dans le cas d’'un systéme de grande capacité.

m Point de vue du physicien

La notion d’information est intimement liée a I’'entropie d’'un systéeme physique, une
quantité qui décrit le désordre d’un systéme ayant un grand nombre de degrés de liberté.
Plus grand est le nombre d’états possibles, plus grande est I'entropie—le désordre—du
systeme. En thermodynamique, I'entropie est précisément donnée par

S = klog

ou k est la constante de Boltzmann et €2 le nombre d’états libres du systeme.
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Entropie d’une source

Soit une source de messages décrite par une variable aléatoire X (éventuellement vec-

torielle) prenant des valeurs discretes xx avec la probabilité p;. Alors I'entropie de la
source est définie comme I'information moyenne par message

Hyx = — Zpk logy px
k

Dans le cas d’'une source de messages prenant des valeurs de nature continue, carac-
térisées par une densité de probabilité px (x), la notion limite d’entropie perd son sens car

— Z?X(k:Ax) : Amjlog2 (pX(kA:v) . Aaz)w + 0o
. ~

Pk

La notion appropriée est alors I” entropie différentielle

Hyx = —/Rpx(x) log, (pX(x))d:L‘

=E{ —log, (px(X))}
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Répartitions a entropie maximale

On s’intéresse aux variables aléatoires (éventuellement vectorielles) X quantifiées qui
stockent le plus d’information sous différentes contraintes:

= nombre fini de valeurs possibles: = € {z1,z2,..., 2N}
= énergie moyenne finie:  E {||X||*} < oo
= positivité et moyenne finie: X >0etE{X} < o
m Nombre fini de valeurs possibles
N N
On cherche p,, maximisant Z —pn log p,, avec la contrainte an =1.
n=1 n=1

N

N
Méthode des multiplicateurs de Lagrange: max Z —pn logpn + A - (1 — an
bn n=1 n=1

S
-~

J(p1,p2;---,PN)
oJ

5 —logp, — 1 — X =0= p, = constante = 1/N
Pn

— la solution est la loi de probabilité uniforme.
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m Energie moyenne finie
On cherche p,, maximisant Z —pn log p, avec Z Ha:nH pn = E et an =1

(1550 e (- )
Lagrange — II;)%X; Pnlogpp + ZP + e ZHQE I°p

(. 7

J(...,pn ,pn+1, 2
o]

Opn
— |a solution est la loi de probabilité Gaussienne discréte.

—logpn — 1= A= pl|za]2 = 0= p, = C e Hlznl’

m Positivité et moyenne finie

On cherche p,, maximisant Z —pn logp, avec ) p, = let Za:npn MolUuzx, >0

Lagrange — I%%XZ —Pnlogpn + A (1 - an) + e ( anpn>

.

J("'ap’rb:pn—‘rly"')

o = —logp, — 1= A= py = 0= p, = C-e™# = p(z,) avec p(z) = C - u(x)e "

— la solution est la loi de probabilité exponentielle discréte.
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Information commune (ou mutuelle)

Soient deux sources aléatoires X et Y. On peut calculer I'entropie H x y du couple (X,Y),
ou bien calculer I'entropie Hx de X et Hy de Y séparément.

Si X et Y sontindépendantes alors ona Hx y = Hx + Hy. De maniére générale, on a
toujours (égalité si et seulement si X et Y sont indépendantes)

Hxy =E{-logypxyv(X,Y)} < Hx + Hy

Laquantité Ixy =Hx +Hy —Hxy = Hx — Hyx)y=Hy —Hy|x

B o px,y(X,Y)
= E{l g2 <px(X) py(Y))}

est alors une mesure de I'information commune entre X et Y. Elle est toujours positive

ou nulle et vérifie
0<Ixy <max(Hx,Hy)

avec égalité si et seulement si il existe une fonction f inversible telle que Y = f(X).
Linformation commune peut donc étre vue comme une corrélation généralisée.

Unser/ Sig & Sys Il 12-24



12.3 PROCESSUS ALEATOIRES

= Statistique d'ordre 2

= Signaux aléatoires

= Stationnarité, ergodicité

= Temps continu/temps discret

= Densité spectrale de puissance
= Théoréme de Wiener-Khintchine
= DSP d'un signal filtré

= Bruit blanc, mouvements Browniens
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Statistique d’ordre 2

En traitement des signaux, on se limite le plus souvent aux statistiques d’ordre 1 et 2
de vecteurs (ou signaux) aléatoires complexes dénotés ici par X
= moyenne simple: px =E{X}
= matrice de covariance: Cx =E {(X —pux)(X —px)'} =E{XX"} —puxp’k

Il'y a plusieurs raisons pour cela
1. On calcule essentiellement des énergies (ou des puissances) dans les systémes
physiques (lois de conservation).

2. Les calculs d’'optimisation de formes quadratiques donnent des systémes linéaires
“faciles” a analyser et a résoudre.

3. La dualité des énergies dans la transformation de Fourier (Parseval) rendent ces statis-
tiques particulierement adaptées aux systémes convolutifs (LIT).

4. Les bruits de nature physique se modélisent par des processus Gaussiens (justification:
théoréme central-limite) qui sont complétement décrits par leur statistique d’ordre 2.

5. Lestimation de parameétres linéaires par minimisation aux moindres carrés est optimale
pour les processus Gaussiens.
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Signhaux aleatoires

Un signal aléatoire a temps discret X [:| peut se voir comme un vecteur de variables
aléatoires (..., X[n — 1], X[n], X[n + 1], ... ) de dimension infinie.

Un signal aléatoire a temps continu X (-) est une limite quand 7" — 0 du signal a
temps discret constitué des échantilions (..., X ((n—1)T), X (nT), X ((n+1)T),...).
On parle alors de processus stochastique (ou aléatoire).

Lidée philosophique est que, méme si un signal est déterministe, 'absence d’information
sur sa génération incite a le modéliser comme la réalisation d’un tirage aléatoire...

Sa statistique est donc caractérisée par une mesure de probabilité (que I'on n’exprime
jamais) et donc par un opérateur d’espérance. Pour avoir une théorie prédictive, on
peut faire diverses hypotheses probabilistes

= la stationnarité au sens strict
= I'ergodicité

= la stationnarité au sens large
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Stationnarité

Un signal aléatoire X (-) est stationnaire au sens strict si et seulement si, quelle que
soit 'espérance calculée, elle est indépendante du point de référence temporel.

Ainsi, si X (-) est stationnaire au sens strict, alors pour tout n € N on a (signaux réels)

E{f(X(t1),X(t2), -, X(tn))} =E{f(X(t1 —a),X(t2 —a), -+, X(tn, —a))} VaeR
=E{f(X(0),X(t2—tr), -, X(ta — 1))} (a=11)

= fonctions de (t3 — t1,t3 — t1, -+ ,t, — t1)
Définition semblable pour les signaux aléatoires complexes, ou discrets, ou les deux.

Un signal aléatoire X (-) est stationnaire au sens large (SSL ou WSS) si et seulement
si les moments d’ordre 1 et 2 sont indépendants du point de référence temporel. Donc,
si et seulement si

E{X(t)} =E{X(0)} =constante VteR

N——

moyenne
statistique de X (t)

EE{X(t)X*(T)}J: E{X(O)X*(T —t)} =px(t—1t) Vt,7€R

-

. atpt'[qcorrglati)%n( "
statistique ae ;. . s
Caractérisation statistique par px : R — C
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Ergodicité

Un signal aléatoire X (-) est ergodique ssi toutes ses moyennes statistiques peuvent
étre obtenues a 'aide de ses moyennes temporelles équivalentes d’'une quelconque de

ses réalisations z(-).
méme statistique

Exemples ‘ WW

d’ou l'utilité d’'une notation distincte

plusieurs réalisations
d’un processus ergodique

. 1
]E{Xt)}:AlgnooZ / x(t+7) dr j iyt
variable —A/2  une réalisation [ ‘
aléatoire du processus ‘ \ |
4/ aléatoire " JWMMW\A meu M\/UW\/\M ‘"/\Nﬁ W/W "WMM H/\M W MW\
B (XX} = fim 5 [ w40 @ e :
_A/2

Remarque: un signal ergodique est automatiquement stationnaire au sens strict (I'inverse
est faux). Lergodicité est une propriété que I'on supposera toujours en pratique pour les
signaux stationnaires.
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Exemples

Stationnarité

signal de parole: non stationnaire bruit coloré stationnaire
' |

statistiques différentes

Ergodicité
Signal stationnaire non ergodique

X(t) = AXO(t) o]
ou Xy (t) est un processus ergodique et /WMW W ," Wb MWWWW ﬂ

A une variable aléatoire indépendante de X (t).

=z ?g
i

plusieurs réalisations
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Temps continu/temps discret

Les échantillons X [n] = X (nT') d'un signal stationnaire X (-) a temps continu forment

un signal stationnaire a temps discret.

Preuve: E{f(---, X, X[n+1],-- )} =E{f(--,X0D), X ((n+1)T),---)}
=E{f(- . X(nT —a),X((n+1)T —a), )} Va € R
=E{f(-,X(nT —noT), X ((n+1)T —noT),---)} Vno€Z
=E{f(- X[n—no), X[n+1—no),-)} Vg € Z

Au contraire, l'interpolation X, (t) = ), X[n]p(t/T — n) d'un signal discret sta-
tionnaire X [n] n'est en général pas stationnaire, sauf si p(t) = sinc(¢) (SSL).

Preuve: E{Xm(t)Xn(t)} =Y E{X[NIX*[n]} ot —n)p(t —n') T =1 sans perte de généralité
n.n' N—
' px[n'—n]
= px[m] > et —m—n)p(t —n)
meZ nez
Or, on sait que si z(t) and y(t) sont a bande limitée dans [—, 7], alors Y x(n)y = [pz(T)y*(T)dT.
nez

En prenant z(7) = o(t' — m — 7), y(7) = p(t — 7) et p = sinc, on obtient alors
2

Z sinc(t’ — m — n)sinc(t —n) = / sinc(t’ — m — 7)sinc(t — 7)dr = (sinc * sinc) ((t’ —t) — m)
nez R —
=sinc
d'oli finalement E { Xini (£) Xy ()} = Y _ px[m smc( —t) — m) — fonction de (' — t).
meZ
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Densité spectrale de puissance

Une réalisation x(-) d’'un signal aléatoire stationaire X (-) n'a pas de transformée de
Fourier exploitable car, a priori, z(-) ¢ Li(R). Mais on peut rendre le signal a support
borné en le multipliant par une fenétre rectangulaire de taille A

Xa(t) =rect(t/A) - X(t)
On peut dés lors calculer la transformée de Fourier 4 (w) = F{x 4 }(w) de toute réali-
sation 24 (-) ce qui donne un sens a X 4(w) = F{X4}. La densité spectrale de puis-
sance (DSP) Sx (w) du processus X () est alors donnée par la limite (si elle existe)

Sx(w) = Jim ZE{|Xa(@)*}>0

Remarque: définition équivalente pour les signaux a temps discret en remplagant la

transformée de Fourier par la DTFT.
Interprétation: P = lima_,o & f+://22 x(t)|*dt est I'énergie moyenne du signal par unité de
temps, c-a-d sa puissance moyenne. En utilisant Parseval

E{P} = lim 51; E{|Xa(w)[*}dw = = [ Sx(w)dw
A—o00 R R

De méme, f:’f Sx (w)‘;—;’ est la contribution des fréquences [w;,ws| a la puissance moyenne du
signal — densité spectrale de puissance.
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Densité spectrale: généralisations

Une extension naturelle de la densité spectrale de puissance est la densité spectrale de
puissance croisée entre deux signaux aléatoires

Sxy() = lm Y E{Xa@w) Vi()}

On peut aussi définir une version généralisée de la DSP dans le cas de signaux vectoriels
X () = (X1(:),..., Xn(")) (application aux multicapteurs)

Sx(w) = lim 1E {XA(w) (XA(w)T)*}
Dans ce cas bien sr, la DSP devient une matrice. Si X () = (X1 (t), X2(t)), on a

o SX1(("')> SX17X2(W)
e (sz,xl @) Sxw) )
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Théoreme de Wiener-Khintchine

Autocorrelation statistique d’'un signal SSL:  px () = E{X(7)X*(t+ 1)}, VreR

Théoréme (Wiener-Khintchine, 1934)
La DSP d'un signal stationnaire au sens large X (¢) (réel) est la transformée de
Fourier de la fonction d’autocorrélation statistique de ce signal

Sx(@) = [ px(Oedt = Flox} ).

Preuve: 1E{|Xa(w)}}= j,]E{AX(t)rect(t/A)e—j“tthX*(t’)rect(t’/A)ej“t'dt’}

= %/ / rect(t/A)rect(t' /A) - E { X ()X *(t')} e~ iw(t=t") q¢d¢’
RJR —_—
px (t'—t)

= / px(fu)e_jw“/ rect(u/A + u')rect(v')du’ du (aprés ch. de variablesu =t — ', u' =t'/A
R R

=(rectxrect) (u/A)

:/tri(u/A)pX(fu)e’jw“du avec px(—u) = px(u) (signal réel)
R

Or, im A o0 tri(u/A) = 1 d'oll limao0 L E {|Xa(w)[?} = [z px (u)e < du

De méme, pour un signal & temps discret X[-] avec X 4 (e/*) = :;464/2 X([n]e " ona
lim L E{XA()P) = Sx () = D px[nle " = Fafpx }w).

nez
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Wiener-Khintchine: généralisations

Une généralisation de ce théoreme est facile pour les densités spectrales de puis-
sance croisées pour des signaux X (-), Y(-) SSL

SXy(w):/pX,y(t)e_j“’tdt
R

ol px v (t) = E{X(7)Y*(t + 1)}, V7 € R (fonction d'intercorrélation).

En fait, on peut généraliser encore plus et considérer des signaux vectoriels X () =
(X1(),..., Xn(-)) SSL. Le théoréme de Wiener-Khintchine s'écrit alors encore

:/RRX(t)e_j“’tdt:/RE{X(O)(X(t)T)*}e_j“tdt

m Fonction matricielle d’intercorrelation

Rx :R— CV*N avec [Rx(t)]mn=E{X.(0)X}#)} = px, x,.(t)

Unser/ Sig & Sys Il

Combinaisons linéaires et covariances

m En dimension fini (par linéarité)

E {( > amXm) () bnYn)} =E { >y amanmYn} = Z > by B{X 0 Yn}

———
=1n=1 =1ln=1
meLn " Cov(Xm,Yn)

m Filtrage et intercorrélation
= Fonction d’intercorrelation de deux processus stochastiques SSL X () et Y (+):
pxy (1) EE{X(0)Y* (1)} = E{X(1)Y"(r + 1)}, VieR
= Signaux filtrées:  U(t) = (hx X)(t), V(t) = (g*Y)(¢t)
m Fonction d’intercorrelation apres filtrage

puv(T) =E{U0)V*(r)} = (hv * g* * pX’y) (1) ou hY(t) = h(—t)

12-35

// YE{X(=t)Y*(r — ')} dtdt/

PX, y(T*t,th)

:/R(/Rh(t —u)g*(t")dt’ )px,y(Tfu)duz ((hv*g*)*pxy)(r)

Chg(u)=(hYxg*)(u)

Preuve: pu,v (T) = E{/ h(t)X(O—t)dt/ g ({E)Y*(r —t’)dt’} Hypothéses: h, g, px,y € L1(R)
R

changement de variable: v =t — ¢
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Densité spectrale d'un signal filtré

Etant donné un signal SSL réel X (t), le signal filtré Y (t) = (h* X)(t) est également SSL
(exercice!). Les densités spectrales de puissance de X (t) et Y (¢) sont alors reliées par

Sy (w) = |H(w)[*Sx (w)

Graphiquement: W(t) px (t) _mPY(t)
Preuve: py(t)=E{Y(0)Y(t)}

=E{ / h(r) X (—7)dr /]R h(T’)X(t—T’)dT'}

= /R/Rh(T)h(T’)E{X(—T)X(t_T/)}deT,

N / / h(r)h(")px (t — 7' + 7)drdr’ py (t) = (B * h* px)(t)
RJR

- /R/R’W)h(f') (% /R Sx (w)ejw(t_T/JrT)dw) drdr’ F{hY + h}(w) z g ((w;;{((w;

= /R ( / a(r)etdr) ( /R B(r)e 7 ar') i S (w)el!d _ H W)

R
=& [ B HE) Sx()d s = & [ Syt
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Bruit blanc

Cas du temps continu
Un bruit blanc B(-) est I'idéalisation mathématique d’un signal stationnaire a moyenne
nulle dont la DSP est constante

Sp(w) =05 & pp(t) =05 8(t)

Un tel signal est donc d’énergie infinie (idéalisation) et ses échantillons sont décor-
rélés, aussi proches soient-ils. Son utilité pratique est de pouvoir représenter/générer
toutes sortes de processus stochastiques physiques par filtrage (bruit coloré).

Un bruit blanc discret B|-] est un signal de moyenne nulle, stationnaire, caractérisé par
I'indépendance de ses échantillons. En particulier, ceci implique

0, sin#0
pBln] = a3 - 6[n] = 7 (décorrélation)
o3, sin=0

Dans ce cas aussi, on a Sg(e/¥) = Fa{pp} = 02.

Caractériser le bruit a temps discret comme bruit blanc est souvent une hypothése
“relativement” réaliste qui simplifie énormément les calculs.
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Modélisation de processus Gaussiens stationnaires

m Génération de signal aléatoire par filtrage d’'un bruit blanc
B(t)

X(t) = (h*B)(t)
bruit blanc Gaussien —m—>

m Densités spectrales de puissance
Sp(w) = a3

Sx(w) =02 |H(w)? “spectral shaping”

m Fonctions d’autocorrelation
pp(t) =E{B(0)B(t)} = 05 4(t)
px (t) = E{X(0)X(t)}
= (hV xh*pp)(t) =02 (hY xh)(t) ou hY(t)=h(-t)
Généralisation pour processus non-Gaussiens et non-stationnaires:
An Introduction to

Unser and Tafti CAMBRIDGE

Sparse Stochastic Processes
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Analyse spectrale généralisée d’un processus SSL
Transformée de Fourier (au sens des distributions): X (w) = F{X}(w) € &'(R)
Fonction d’autocorrélation spectrale: (w, &) — E{X (w)X*(¢)} € &'(RxR)

Théoreme (Gelfand 1955)

Soit X (¢) un processus stationnaire au sens large a valeur moyenne nulle. Alors
E{X (w)X*(§)} = 2md(w — §) - Sx (w).

La transformée de Fourier généralisée de X (-) est donc parfaitement décorrélée
mais avec une variance “infinie” proportionnelle a Sx (w) = F{px }(w).

Interprétation: La transformée de Fourier diagonalise la fonction d’autocorrélation d’un signal SSL.

Ceci implique que les composantes spectrales d’un processus stationnaire Gaussien sont
indépendantes (transformation de Karhunen-Loéve).

Preuve formelle:

(R @)X (©) =E /R X(Deat ( / X(r)e€rar)’

= / / e WR{X (1) X* (1)} dtdr = / / e W) )T dtdr
RJR

. / it oT g / px(—u)e Ty = F{eiH(w) F{p% Hw) = 276(w — &) Sx ()
R R

Changement de variable: u =t — 7
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Mouvements Browniens

Le mouvement Brownien standard est I'intégrale d’un bruit blanc a temps continu. C’est un processus

Gaussien tel que
E{IX(t) - X)W} =C-|t -1

Il n’est pas stationnaire, mais ses accroissements le sont. Certains signaux naturels sont des mouvements

Browniens (agitation des microparticules dans un liquide (cf. A. Einstein)).

Le mouvement Brownien fractionnaire est une extension du précédent: c’est toujours un processus
Gaussien mais ses accroissements obéissent a une loi différente

ou 0 < H < 1 est I"exposant de Hurst”. Nombreuses applications pour modéliser des phénoménes de
croissance (e.g., fractales).

. . . . . »
mouvement Brownien classique H=0.5 mouvement Brownien fractionnaire H=0.7

" M
b A ARAY
W \ A

V
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12.4 FILTRAGE DE SIGNAUX BRUITES

Estimation de signaux

Filtrage accordé
= Minimisation de la puissance moyenne de l'erreur

Filtre de Wiener-Hopf
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Rappel: Processus stochastiques

Le processus X (-) (réel) est stationnaire au sens large (SSL) ssi:
= VteR: E{X(¢)} = ux = Constante

Vi, eR: E{XWOX({)} =px({t' —t)=px(t—1)
m Fonction d’autocorrélation statistique px : R = R
px () EE{X(0)X (1)} = E{X(®)X(r+1)},VteR

m Densité spectrale de puissance
1 A X A/2 _
Sx(w) = lim ~E{Xa(w)} avec Xa(w)= / X (t)eitdt
m Théoréme de Wiener-Khintchine

Sx(w) = / px (eIt = F{px}(w)

1
= E{X(®)|*} = %/RSX(W)dw (énergie moyenne du signal)
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Estimation de sighaux

Description du probléme

Un récepteur regoit un signal, constitué du signal émis a retrouver et d'un bruit, caractéristique du
processus de transmission-réception. On supposera toujours ici que le bruit perturbe le signal de
maniére additive, qu'il est décorrélé du signal et de moyenne nulle.

(1) y(t) = a(t) +b(t)
S~~~ ' N
signal émis signal regu
b(t)
~—~—
bruit

La sévérité de la perturbation est quantifiée par son rapport signal a bruit (RSB),
souvent exprimé en décibels

0t (EOXOP)
(8 RSB = 10-lomo 1501}
b(t) z(t) + (1)

‘ U

I‘h | | ‘\

| \Mh “u ‘ | “ RSB, = 0dB
| i \ I

'Wi\n /
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Filtrage accorde

Si le signal en entrée est de nature discréte, par exemple z(t) = Zﬁ;l fIn]pn(t —ty)
alors on cherche un filtre qui amplifie le plus possible 'amplitude de I'impulsion ¢, (- — t,,)
en gardant le bruit & un niveau constant. Ceci permet de garantir une détection maximale
par seuillage (cas de données quantifiées).

Pour z(t) = f[n]e(t — t,) (impulsion unique), le filtre optimal (a un facteur d’amplitude

pres) est > (w)
H(w) = avec o= Flp
(w) S5 (@) {0}
et si le bruit est blanc, alors (filtre accordé) = h(t) = p(—t) = corrélateur
Preuve: puissance du bruitinchangée < ;W/S’B(w)dw: ;ﬂ/ |H(w)|?Sp(w)dw
D" (w *
(h*@(._tn))( n) = (h*xp)(0 _QW/H /H VSp(w) - (@) dw
O (w)[?
< Gk Hw)|?S dw - | d
< o \//R| (w)[2Sp(w)dw \/ S (Cauchy-Schwarz)
v Jg SB(w)dw
avec égalité (réponse max) si et seulement si H(w)+/Sp(w) = A LAC)
Sp(w)
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signal bruité Z fnlp(t —n) + b(t)

‘ W U \ ! filtrage accordé

| i M il 1

Le filtrage accordé assure qu’aux instants d’échantillonnage, le rapport signal a
bruit sera maximisé, facilitant ainsi la détection. Mais il n’assure pas que les valeurs
échantillonnées recues égalent les valeurs échantillonnées émises: pour cela, il faut

que (¢ @) ()], = (0, (- = n)) = d[n].

Yy

< {p(- — n)}nez est une base orthonormale.
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Minimisation de la puissance moyenne de l'erreur

On souhaite trouver un filtre qui, appliqué a une réalisation de Y (-) = X(-) + B(:),
elimine le plus de bruit possible et conserve le mieux possible le signal.

€ x(t
(t) 20 y(t) m_. ()
t

On veut plus précisément minimiser la puissance moyenne de l'erreur E(t) = X (t) — X (),
c-a-d

E{IE®)"} = 5 /R (1H (@) = 1*Sx (w) + [H(w)[* S (w)) dw

Dérivation: E{|X(t) - X(8)|"} = E{|(h* X)(t) - X(t) + (h = B)(1)[*}
=E{|(h*X)(t) — X(t)|2} +E{|(h=B) (t)‘Q} (indépendance entre X (t) et B(t))

={|(nw—-o) x|’}

=L i (yH(w) - 1]2SX (w) + |H(w)|253(w)) dw  (Wiener-Khintchine)
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Filtre de Wiener-Hopf

On suppose maintenant que I'on connait a la fois Sx (w) et Sp(w), qui sont la DSP du
signal et celle du le bruit. Il s’agit donc de minimiser par rapport & H (w) l'intégrale

o %/ (JH(w) — 11Sx (@) + |H(w)[2S5 (w)) dw
R

Par cela, on remarque que

Sx(w)

B S)((UJ)SB (w)
Sx(w) + Sp(w)

H{w) o Sx (@) + 55(w)

dw + dw

o = /R (Sx(w) + S5(w))

SX(w)SB(w)
~ Jr Sx(w) + Sp(w)

dw

avec égalité uniqguement si H (w) = Hy (w) ol

_ Sx(w)
Sx(w)+ Sp(w)

est le filtre de Wiener-Hopf, aussi appelé filire de Wiener.

Hw(CL))
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Filtre de Wiener vs. filtre idéal

m Filtre de Wiener

Sx () <1

Hw(w) = Sx(w) + Sp(w) =

Pour les fréquences w ol Sx(w) > Sp(w), on a Hy (w) ~ 1, et les fréquences
ou Sx(w) <« Sp(w) alors Hy (w) ~ 0. Donc, 'avantage que I'on peut espérer par
rapport & un filtrage idéal est limité aux cas ou Sx (w) et Sp(w) sont du méme ordre

de grandeur (faible RSB).
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Processus stochastiques discrets

Le processus X |[-] (réel) est stationnaire au sens large (SSL) ssi:
» VneZ: E{X[n]} =pux = Constante
« Vm,neZ: E{X[m]X[n]} = px|n—m] = px[m —n]

m Fonction d’autocorrélation statistique discréte px : Z —+ R

px[n] = B{X[0]X[n]} = E{X[m]X[m+n]},Vm € Z

m Densité spectrale de puissance (2m-périodique)

Sx () = lim —E{|XK(eJ“’)| b avec Xg () Z X[n

K—oo 2

m Théoréme de Wiener-Khintchine discret

x () =) px[nje " = Fa{px }(w)

new

1 [7 -
= E{X[n]*} = %/ Sx(e™)dw (énergie moyenne du signal)

—T
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Filtrage statistique en temps discret
m Filtrage réel d’'un processus stochastique SSL : Y'[n] = (h * X)[n]
= X[]SSL = Y|[]SSL
w py[n] = (hY xhxpx)[n] avec hY[n]=h[-n]
= Sy (&) = [H(el)[?Sx (e!)
m Bruit blanc discret: B[] SSL a moyenne nulle avec Sg (/) = o3

&  E{B[n]} =0 et E{B[n|Bn']} = oid[n —n’]

m Somme de processus aléatoires mutuellement indépendants
X|] et Y[] SSL a moyenne nulle avec E{ X [m]Y [n|} = 0,Vm,n € Z
= X[]+Y]] SSL a moyenne nulle avec DSP Sx .y (¢/*) = Sx (e)+ Sy (e/*)

: Sx (e)”
m Filtre de Wiener discret: Hyy (¢)“) = 5 (ejw))(EfS) (&)
X B

= Modéle stochastique de mesure: Y'[n] = X[n]| + B[n]
= Estimateur: X[n] = (hy * Y)[n] tel que E{|X[n] — X [n]|*} minimum
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